8 research outputs found

    Learning with Limited Labeled Data in Biomedical Domain by Disentanglement and Semi-Supervised Learning

    Get PDF
    In this dissertation, we are interested in improving the generalization of deep neural networks for biomedical data (e.g., electrocardiogram signal, x-ray images, etc). Although deep neural networks have attained state-of-the-art performance and, thus, deployment across a variety of domains, similar performance in the clinical setting remains challenging due to its ineptness to generalize across unseen data (e.g., new patient cohort). We address this challenge of generalization in the deep neural network from two perspectives: 1) learning disentangled representations from the deep network, and 2) developing efficient semi-supervised learning (SSL) algorithms using the deep network. In the former, we are interested in designing specific architectures and objective functions to learn representations, where variations in the data are well separated, i.e., disentangled. In the latter, we are interested in designing regularizers that encourage the underlying neural function\u27s behavior toward a common inductive bias to avoid over-fitting the function to small labeled data. Our end goal is to improve the generalization of the deep network for the diagnostic model in both of these approaches. In disentangled representations, this translates to appropriately learning latent representations from the data, capturing the observed input\u27s underlying explanatory factors in an independent and interpretable way. With data\u27s expository factors well separated, such disentangled latent space can then be useful for a large variety of tasks and domains within data distribution even with a small amount of labeled data, thus improving generalization. In developing efficient semi-supervised algorithms, this translates to utilizing a large volume of the unlabelled dataset to assist the learning from the limited labeled dataset, commonly encountered situation in the biomedical domain. By drawing ideas from different areas within deep learning like representation learning (e.g., autoencoder), variational inference (e.g., variational autoencoder), Bayesian nonparametric (e.g., beta-Bernoulli process), learning theory (e.g., analytical learning theory), function smoothing (Lipschitz Smoothness), etc., we propose several leaning algorithms to improve generalization in the associated task. We test our algorithms on real-world clinical data and show that our approach yields significant improvement over existing methods. Moreover, we demonstrate the efficacy of the proposed models in the benchmark data and simulated data to understand different aspects of the proposed learning methods. We conclude by identifying some of the limitations of the proposed methods, areas of further improvement, and broader future directions for the successful adoption of AI models in the clinical environment

    Learning Geometry-Dependent and Physics-Based Inverse Image Reconstruction

    Full text link
    Deep neural networks have shown great potential in image reconstruction problems in Euclidean space. However, many reconstruction problems involve imaging physics that are dependent on the underlying non-Euclidean geometry. In this paper, we present a new approach to learn inverse imaging that exploit the underlying geometry and physics. We first introduce a non-Euclidean encoding-decoding network that allows us to describe the unknown and measurement variables over their respective geometrical domains. We then learn the geometry-dependent physics in between the two domains by explicitly modeling it via a bipartite graph over the graphical embedding of the two geometry. We applied the presented network to reconstructing electrical activity on the heart surface from body-surface potential. In a series of generalization tasks with increasing difficulty, we demonstrated the improved ability of the presented network to generalize across geometrical changes underlying the data in comparison to its Euclidean alternatives

    Interpretable Modeling and Reduction of Unknown Errors in Mechanistic Operators

    Full text link
    Prior knowledge about the imaging physics provides a mechanistic forward operator that plays an important role in image reconstruction, although myriad sources of possible errors in the operator could negatively impact the reconstruction solutions. In this work, we propose to embed the traditional mechanistic forward operator inside a neural function, and focus on modeling and correcting its unknown errors in an interpretable manner. This is achieved by a conditional generative model that transforms a given mechanistic operator with unknown errors, arising from a latent space of self-organizing clusters of potential sources of error generation. Once learned, the generative model can be used in place of a fixed forward operator in any traditional optimization-based reconstruction process where, together with the inverse solution, the error in prior mechanistic forward operator can be minimized and the potential source of error uncovered. We apply the presented method to the reconstruction of heart electrical potential from body surface potential. In controlled simulation experiments and in-vivo real data experiments, we demonstrate that the presented method allowed reduction of errors in the physics-based forward operator and thereby delivered inverse reconstruction of heart-surface potential with increased accuracy.Comment: 11 pages, Conference: Medical Image Computing and Computer Assisted Interventio
    corecore